Telegram Group & Telegram Channel
Forwarded from Machinelearning
🔥 FireEdit — новая методика редактирования изображений по инструкции

🌟 В основе FireEdit — усовершенствованная Vision Language Model (VLM), способная выполнять тонкое и точное редактирование изображений на основе текстовых промптов.

🌟 Что внутри:
🟢Region Tokens
Позволяют VLM точно определять редактируемые объекты даже в сложных сценах, не затрагивая остальное изображение.
🟢Time-Aware Target Injection
Динамически регулирует степень редактирования на разных этапах шумоподавления, интегрируя информацию о времени с текстовыми эмбеддингами.
🟢Hybrid Visual Cross-Attention
Позволяет сохранить высокочастотные визуальные детали и семантическую согласованность изображения.

✔️Результаты
FireEdit превосходит другие SOTA-методы на датасете Emu Edit — как по точности локализации, так и по качеству результата.

✔️ Визуальные сравнения показывают, что FireEdit:
🟢Лучше локализует редактируемые области
🟢Меньше искажает фон и окружающие детали
🟢Сохраняет высокую семантическую точность

🔜 Статья
🔜Проект

@ai_machinelearning_big_data


#AI #VLM #Diffusion #ImageEditing #FireEdit #ML
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/sqlhub/1840
Create:
Last Update:

🔥 FireEdit — новая методика редактирования изображений по инструкции

🌟 В основе FireEdit — усовершенствованная Vision Language Model (VLM), способная выполнять тонкое и точное редактирование изображений на основе текстовых промптов.

🌟 Что внутри:
🟢Region Tokens
Позволяют VLM точно определять редактируемые объекты даже в сложных сценах, не затрагивая остальное изображение.
🟢Time-Aware Target Injection
Динамически регулирует степень редактирования на разных этапах шумоподавления, интегрируя информацию о времени с текстовыми эмбеддингами.
🟢Hybrid Visual Cross-Attention
Позволяет сохранить высокочастотные визуальные детали и семантическую согласованность изображения.

✔️Результаты
FireEdit превосходит другие SOTA-методы на датасете Emu Edit — как по точности локализации, так и по качеству результата.

✔️ Визуальные сравнения показывают, что FireEdit:
🟢Лучше локализует редактируемые области
🟢Меньше искажает фон и окружающие детали
🟢Сохраняет высокую семантическую точность

🔜 Статья
🔜Проект

@ai_machinelearning_big_data


#AI #VLM #Diffusion #ImageEditing #FireEdit #ML

BY Data Science. SQL hub







Share with your friend now:
tg-me.com/sqlhub/1840

View MORE
Open in Telegram


Data Science SQL hub Telegram | DID YOU KNOW?

Date: |

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Data Science SQL hub from it


Telegram Data Science. SQL hub
FROM USA